Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 9(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291235

RESUMO

AIMS: Recent studies have found circulating concentrations of the gastrointestinal hormone GLP-1 to be an excellent predictor of cardiovascular risk in patients with myocardial infarction. This illustrates a yet not appreciated crosstalk between the gastrointestinal and cardiovascular systems, which requires further investigation. The gut-derived hormone Peptide YY (PYY) is secreted from the same intestinal L-cells as GLP-1. Relevance of PYY in the context of cardiovascular disease has not been explored. In this study, we aimed to investigate PYY serum concentrations in patients with acute myocardial infarction and to evaluate their association with cardiovascular events. MATERIAL AND METHODS: PYY levels were assessed in 834 patients presenting with acute myocardial infarction (553 Non-ST-Elevation Myocardial Infarction (NSTEMI) and 281 ST-Elevation Myocardial Infarction (STEMI)) at the time of hospital admission. The composite outcomes of first occurrence of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke (3-P-MACE), and all-cause mortality were assessed with a median follow-up of 338 days. RESULTS: PYY levels were significantly associated with age and cardiovascular risk factors, including hypertension, diabetes, and kidney function in addition to biomarkers of heart failure (NT-pro BNP) and inflammation (hs-CRP). Further, PYY was significantly associated with 3-P-MACE (HR: 1.7; 95% CI: 1-2.97; p = 0.0495) and all-cause mortality (HR: 2.69; 95% CI: 1.61-4.47; p = 0.0001) by univariable Cox regression analyses, which was however lost after adjusting for multiple confounders. CONCLUSIONS: PYY levels are associated with parameters of cardiovascular risk as well as cardiovascular events and mortality in patients presenting with acute myocardial infarction. However, this significant association is lost after adjustment for further confounders.

2.
J Phys Chem B ; 119(16): 5136-44, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25802098

RESUMO

The reversible photoswitching of the photochromic fluorescent protein Padron0.9 involves a cis-trans isomerization of the chromophore. Both isomers are subjected to a protonation equilibrium between a neutral and a deprotonated form. The observed pH dependent absorption spectra require at least two protonating groups in the chromophore environment modulating its proton affinity. Using femtosecond transient absorption spectroscopy, we elucidate the primary reaction steps of selectively excited chromophore species. Employing kinetic and spectral modeling of the time dependent transients, we identify intermediate states and their spectra. Excitation of the deprotonated trans species is followed by excited state relaxation and internal conversion to a hot ground state on a time scale of 1.1-6.5 ps. As the switching yield is very low (Φtrans→cis = 0.0003 ± 0.0001), direct formation of the cis isomer in the time-resolved experiment is not observed. The reverse switching route involves excitation of the neutral cis chromophore. A strong H/D isotope effect reveals the initial reaction step to be an excited state proton transfer with a rate constant of kH = (1.7 ps)(-1) (kD = (8.6 ps)(-1)) competing with internal conversion (kic = (4.5 ps)(-1)). The deprotonated excited cis intermediate relaxes to the well-known long-lived fluorescent species (kr = (24 ps)(-1)). The switching quantum yield is determined to be low as well, Φcis→trans = 0.02 ± 0.01. Excitation of both the neutral and deprotonated cis chromophores is followed by a ground state proton transfer reaction partially re-establishing the disturbed ground state equilibrium within 1.6 ps (deuterated species: 5.6 ps). The incomplete equilibration reveals an inhomogeneous population of deprotonated cis species which equilibrate on different time scales.


Assuntos
Luz , Proteínas Luminescentes/química , Processos Fotoquímicos , Análise Espectral , Estereoisomerismo , Fatores de Tempo
3.
J Am Soc Echocardiogr ; 27(3): 249-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24368027

RESUMO

BACKGROUND: Myocardial deformation analysis by speckle-tracking echocardiography (STE) has been shown to accurately predict viability in patients with chronic ischemic left ventricular (LV) dysfunction. The aim of this study was to evaluate two-dimensional STE for the prediction of global and segmental LV functional changes after acute myocardial infarction (AMI) in comparison with late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR). METHODS: In 93 patients (mean age, 60 ± 11 years) with first AMIs (55 with ST-segment elevation myocardial infarctions and 38 with non-ST-segment elevation myocardial infarctions) treated with acute percutaneous coronary intervention, global peak longitudinal strain was determined to describe global function by STE, and peak systolic circumferential and longitudinal strain was determined for segmental function analysis. LGE CMR was performed to define the amounts of global and segmental myocardial scar. STE and LGE CMR were performed within 48 hours of AMI. At 6-month follow-up, transthoracic echocardiography was repeated to determine global und segmental LV recovery and adverse LV remodeling (increase in end-systolic volume > 15%). RESULTS: Accuracy to predict global functional improvement as well as LV remodeling at 6-month follow-up after AMI was similar for STE and LGE CMR (areas under the curve, 0.715 vs 0.729 [P = .8830] and 0.806 vs 0.824 [P = .7141], respectively). Peak systolic circumferential strain < -14.2% had sensitivity of 71.6% and specificity of 58.1% to predict segmental functional improvement. Compared with LGE CMR, the predictive accuracy of transmural STE for segmental functional improvement at 6-month follow-up was lower (area under the curve, 0.788 vs 0.668; P = .0001). Predictive accuracy for segmental functional improvement could be improved by analysis of endocardial circumferential strain (area under the curve, 0.700 vs 0.668 for transmural speckle-tracking echocardiographic analysis; P = .0023). CONCLUSIONS: Two-dimensional STE allows the prediction of global functional recovery as well as LV remodeling after AMI with accuracy comparable with that of LGE CMR. Accuracy to predict segmental functional recovery using transmural deformation analysis by two-dimensional STE is inferior compared with LGE CMR but can be improved by a layer-specific analysis of endocardial deformation.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Gadolínio DTPA , Ventrículos do Coração/fisiopatologia , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Meios de Contraste/administração & dosagem , Módulo de Elasticidade , Feminino , Gadolínio DTPA/administração & dosagem , Dureza , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia
4.
Phys Chem Chem Phys ; 14(33): 11651-6, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22824981

RESUMO

The vibrational energy relaxation from the first excited ND-stretching mode of NH(2)D dissolved in liquid NH(3) is studied using molecular dynamics simulations. The rate constants for inter- and intramolecular energy transfer are calculated in the framework of the quantum-classical Landau-Teller theory. At 273 K and an ammonia density of 0.642 g cm(-3) the calculated ND-stretch lifetime of τ = 9.1 ps is in good agreement with the experimental value of 8.6 ps. The main relaxation channel accounting for 52% of the energy transfer involves an intramolecular transition to the first excited state of the umbrella mode. The energy difference between both states is taken up by the near-resonant bending vibrations of the solvent. Less important for the ND-stretch lifetime are both the direct transition to the ground state and intramolecular relaxation via the NH(2)D bending modes contributing 23% each. Our calculations imply that the experimentally observed weak density dependence of τ is caused by detuning the resonance between the ND-stretch-umbrella energy gap and the solvent accepting modes which counteracts the expected linear increase of the relaxation rate with density.


Assuntos
Amônia/química , Deutério/química , Transferência de Energia , Simulação de Dinâmica Molecular , Nitrogênio/química , Teoria Quântica , Vibração
5.
Biophys J ; 100(12): L63-5, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21689517

RESUMO

We report superresolution fluorescence microscopy in an intact living organism, namely Caenorhabditis elegans nematodes expressing green fluorescent protein (GFP)-fusion proteins. We also superresolve, by stimulated emission depletion (STED) microscopy, living cultured cells, demonstrating that STED microscopy with GFP can be widely applied. STED with GFP can be performed with both pulsed and continuous-wave lasers spanning a wide wavelength range from at least 556-592 nm. Acquiring subdiffraction resolution images within seconds enables the recording of movies revealing structural dynamics. These results demonstrate that numerous microscopy studies of live samples employing GFP as the marker can be performed at subdiffraction resolution.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Saccharomyces cerevisiae/metabolismo , Absorção , Animais , Caenorhabditis elegans/citologia , Neurônios/citologia , Neurônios/metabolismo , Saccharomyces cerevisiae/citologia , Análise Espectral
6.
J Chem Phys ; 130(17): 174507, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19425790

RESUMO

Vibrational energy relaxation of HOD in deuterated water is investigated performing classical nonequilibrium molecular dynamics simulations. A flexible SPC/E model is employed to describe the intermolecular interactions and the intramolecular potential of the D(2)O solvent. A more accurate intramolecular potential is used for HOD. Our results for the OH stretch, OD stretch, and HOD bend vibrational relaxation times are 2.7, 0.9, and 0.57 ps, respectively. Exciting the OH stretching mode the main relaxation pathway involves a transition to the bending vibration. These results are in agreement with recent semiclassical Landau-Teller calculations. Contrary to this previous work, however, we observe a strong coupling of bending and OH stretching mode to the HOD rotation. As a result almost half of the total vibrational energy is transferred through the HOD rotation to the bath. At the same time the most efficient acceptor mode is the D(2)O rotation indicating the importance of resonant libration-to-libration energy transfer. We also find significant vibrational excitation of the D(2)O bending mode of the D(2)O solvent by V-V energy transfer from the HOD bending mode.


Assuntos
Óxido de Deutério/química , Modelos Moleculares , Vibração , Transferência de Energia , Hidróxidos/química , Solventes/química , Análise Espectral
7.
J Phys Chem A ; 113(19): 5531-9, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19378934

RESUMO

The photophysics and photochemistry of (1-biphenyl-4-yl-1-methyl-ethyl)-tert-butyl diazene were thoroughly studied by laser flash photolysis from the picosecond to the microsecond time domain. The compound has favorable features as a radical photoinitiator and as a probe for cage effect studies in liquids, supercritical fluids, and compressed gases. The biphenyl moiety acts as an antenna efficiently transferring electronic energy to the dissociative (1)n,pi* state centered on the azo moiety. By picosecond experiments irradiating at the biphenyl- and at the azo-centered transitions, we were able to demonstrate this fact as well as determine a lifetime of 0.7 ps for the buildup of 1-biphenyl-4-yl-1-methyl-ethyl radicals (BME*). The sum of in-cage reaction rate constants of BME* radicals by combination and disproportionation is 5 x 10(10) s(-1). The free radical quantum yield in solution is 0.21 (phi(BME*)) in n-hexane at room temperature, whereas the dissociation quantum yield approaches 50%. The symmetric ketone, 2,4-bis-biphenyl-4-yl-2,4-dimethyl-pentan-2-one, was used as a reference compound for the production and reaction of BME* radicals. Transient IR measurements show CO stretching bands of the excited (3)pi,pi* and (1)n,pi* states but no dissociation up to 0.5 ns. A fluorescence lifetime of 1 ns for this ketone is consistent with this observation. By transient actinometry and kinetic decays in the microsecond time range, we measured epsilon(BME*) = (2.3 +/- 0.2) x 10(4) M(-1) cm(-1) at 325 nm and a second-order rate constant of 5.8 x 10(9) M(-1) s(-1) for the consumption of BME* radicals.

8.
J Phys Chem A ; 113(18): 5289-95, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19364108

RESUMO

We studied the photolysis of (1-biphenyl-4-yl-1-methyl-ethyl)-tert-butyl diazene in supercritical CO(2) and Xe, as well as in compressed Kr. The compound has good solubility in the mentioned fluids, allowing the photolysis measurements to be performed in CO(2) at 1.4 K above T(c) and at pressures as low as 70 bar. We monitored relative cage effect after nanosecond laser pulses by measuring the absorbance at 320 nm (DeltaA(t-->0)) corresponding to the total amount of out-of-cage 1-biphenyl-4-yl-1-methyl-ethyl radical (BME.) produced after nitrogen loss of the diazene. In supercritical CO(2) and Xe, isothermal values of DeltaA(t-->0) showed an increase-decrease behavior with increasing pressure at constant temperature, a typical feature of the transition from the solvent energy transfer to the friction controlled regimes. The comparison of the behavior of DeltaA(t-->0) in CO(2) at reduced temperatures between 1.004 and 1.027, in Xe, and in Kr points to an absence of enhanced cage effect near the critical point. Compatibility with spectroscopic data is analyzed.


Assuntos
Compostos de Bifenilo/química , Gases/química , Imidas/química , Fotólise , Absorção , Solubilidade
9.
Phys Chem Chem Phys ; 11(2): 317-23, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19088987

RESUMO

Ultrafast electronic excitation transfer (EET) followed by structural and vibrational relaxation (VER) of the acceptor have been characterised using transient absorption and transient lens techniques.

10.
Phys Chem Chem Phys ; 10(34): 5218-24, 2008 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-18728863

RESUMO

The ultrafast photodissociation of tert-butyl-9-methylfluorene-9-percarboxylate (TBFC) is studied by mid-infrared transient absorption spectroscopy after UV excitation at 266 nm. By means of 13C-labeled TBFC and additional DFT calculations transient IR bands in the fingerprint region were unambiguously assigned to the methylfluorenyl radical. The experiments show that the fragmentation is controlled by the S1-lifetime of TBFC and, dependent on the solvent, within 0.8-2.1 ps leads to tert-butyloxy and methylfluorenyl radicals plus CO2 via concerted bond breakage of the O-O and the fluorenyl-C(carbonyl) bond. In accordance, the CO2 quantum yield is determined to be unity.

11.
Phys Chem Chem Phys ; 10(12): 1662-8, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18338067

RESUMO

The ultrafast photo-fragmentation of dibenzoyl peroxide (DBPO) is studied using femtosecond UV excitation at 266 nm and mid-infrared broadband probe pulses to elucidate the dissociation mechanism. With the help of (13)C-labeled DBPO it was possible to unambiguously assign transient IR bands in the fingerprint region to the benzoyloxy radical. Our experiments show that the fragmentation is controlled by the S(1)-lifetime of DBPO and within 0.4 +/- 0.2 ps leads to a benzoyloxy/phenyl radical pair plus CO(2)via concerted bond breakage of the O-O and the phenyl-C(carbonyl) bond. 20% of the radical pairs geminately recombine to phenyl benzoate on a timescale of 70 ps.


Assuntos
Peróxido de Benzoíla/química , Fotólise , Espectrofotometria Infravermelho/métodos , Benzeno/química , Derivados de Benzeno/química , Peróxido de Benzoíla/efeitos da radiação , Dióxido de Carbono/química , Radicais Livres/química , Modelos Químicos , Raios Ultravioleta
12.
J Phys Chem A ; 111(40): 10111-8, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17867659

RESUMO

The ultrafast photofragmentation of arylperoxycarbonates R-O-C(O)O-O-tert-butyl (R = naphthyl, phenyl) is studied using femtosecond UV excitation at 266 nm and mid-infrared broadband probe pulses to elucidate the dissociation mechanism. Our experiments show that the rate of fragmentation is determined by the S1-lifetime of the peroxide, i.e., the time constants of S1 decay and of CO2 and R-O* formation are identical. The fragmentation times are solvent dependent and for tert-butyl-2-naphthylperoxycarbonate (TBNC) vary from 25 ps in CH2Cl2 to 52 ps in n-heptane. In the case of the tert-butylphenylperoxycarbonate (TBPC) the decomposition takes 5.5 ps in CD2Cl2 and 12 ps in n-heptane. The CO2 fragment is formed vibrationally hot with an excess energy of about 5000 cm(-1). The hot CO2 spectra at high energy can be modeled assuming Boltzmann distributions with initial vibrational temperatures of ca. 2500 K which relax to ambient temperature with time constants of 280 ps in CCl4 and 130 ps in n-heptane. In CCl4 the relaxed spectra at 1.5 ns show 3.5% residual excitation in the n = 1 level of the asymmetric stretch vibration.


Assuntos
Carbonatos/química , Físico-Química/métodos , Fotoquímica/métodos , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos , Dióxido de Carbono/química , Etilsuccinato de Eritromicina , Luz , Modelos Químicos , Modelos Estatísticos , Espectrofotometria/métodos , Temperatura , Fatores de Tempo , Vibração
13.
Phys Chem Chem Phys ; 9(14): 1688-92, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17396180

RESUMO

Non-equilibrium molecular dynamics (NEMD) simulations of energy transfer from vibrationally excited CO(2) to CCl(4) and CH(2)Cl(2) solvent molecules are performed to identify the efficiency of different energy pathways into the solvent bath. Studying in detail the work performed by the vibrationally excited solute on the different solvent degrees of freedom, it is shown that vibration-to-vibration (V-V) processes are strongly dominant and controlled by those accepting modes which are close in frequency to the CO(2) bend and symmetric stretch vibration.


Assuntos
Dióxido de Carbono/química , Tetracloreto de Carbono/química , Cloreto de Metileno/química , Modelos Químicos , Transferência de Energia , Solventes/química , Fatores de Tempo , Vibração
14.
J Phys Chem B ; 110(40): 19820-32, 2006 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17020367

RESUMO

We investigated spectroscopic and dynamic fluorescence properties of the S1 <-- S0 transitions of three intramolecularly hydrogen-bonded molecules, 1,8-dihydroxyanthraquinone (1,8-DHAQ), 1-aminoanthraquinone (1-AAQ), and 9-hydroxyphenalenone (9-HPA), by determining their fluorescence excitation spectra and state-selective fluorescence lifetimes under supersonic jet conditions. Moreover, ab initio calculations were performed on one-dimensional hydrogen transfer potential energy curves in both the S0 and the S1 state and on S0 and S1 minimum energy conformations and normal-mode frequencies at different levels of theory (HF/6-31G(d,p) and B3LYP/6-31G(d,p), CIS/6-31G(d,p) and TDDFT/6-31G(d,p)//CIS/6-31G(d,p), respectively). In line with calculations based on the theory of "atoms in molecules" (AIM), we suggest that the fluorescence properties of 1-AAQ are associated with a single-minimum-type potential. The nonradiative relaxation mechanism is attributed to internal conversion to the S0 state. For 1,8-DHAQ, we suggest in agreement with previous findings that the fluorescence bands below approximately 600 cm(-1) are due to transitions originating in the 9,10-quinone well, whereas the bands above approximately 600 cm(-1) are due to transitions originating in the proton-transferred 1,10-quinone well, thus confirming the assumption that 1,8-DHAQ possesses a double-minimum-type S1 potential. On the basis of our ab initio calculations, we suggest that the fluorescence originating in the 1,10-quinone well is due to vertical absorption into the 9,10-quinone well and subsequent fast ESIPT above the hydrogen transfer barrier. For 9-HPA, only the frequency-domain measurements give tentative evidence of the presence of a pronounced double-minimum-type potential. The rapid nonradiative relaxation mechanism as revealed by fluorescence lifetime measurements is attributed to intersystem crossing to a triplet state.

15.
J Phys Chem A ; 110(15): 5017-31, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610820

RESUMO

We investigated the spectroscopy of the first excited singlet electronic state S1 of 2-phenylindene using both fluorescence excitation spectroscopy and resonantly enhanced multiphoton ionization spectroscopy. Moreover, we investigated the dynamics of the S1 state by determining state-selective fluorescence lifetimes up to an excess energy of approximately 3400 cm(-1). Ab initio calculations were performed on the torsional potential energy curve and the equilibrium and transition state geometries and normal-mode frequencies of the first excited singlet state S1 on the CIS level of theory. Numerous vibronic transitions were assigned, especially those involving the torsional normal mode. The torsional potentials of the ground and first excited electronic states were simulated by matching the observed and calculated torsional frequency spacings in a least-squares fitting procedure. The simulated S1 potential showed very good agreement with the ab initio potential calculated on the CIS/6-31G(d,p) level of theory. TDDFT energy corrections improved the match with the simulated S(1) torsional potential. The latter calculation yielded a torsional barrier of V2 = 6708 cm(-1), and the simulation a barrier of V2 = 6245 cm(-1). Ground-state normal-mode frequencies were calculated on the B3LYP/6-31G(d,p) level of theory, which were used to interpret the infrared spectrum, the FDS spectrum of the transition and hot bands of the FES spectrum. The fluorescence intensities of the nu49 overtone progression could reasonably be reproduced by considering the geometry changes upon electronic excitation predicted by the ab initio calculations. On the basis of the torsional potential calculations, it could be ruled out that the uniform excess energy dependence of the fluorescence lifetimes is linked to the torsional barrier in the excited state. The rotational band contour simulation of the transition yielded rotational constants in close agreement to the ab initio values for both electronic states. Rotational coherence signals were obtained by polarization-analyzed, time-resolved measurements of the fluorescence decay of the transition. The simulation of these signals yielded corroborating evidence as to the quality of the ab initio calculated rotational constants of both states. The origin of the anomalous intensity discrepancy between the fluorescence excitation spectrum and the REMPI spectrum is discussed.


Assuntos
Compostos Bicíclicos com Pontes/química , Análise Espectral , Temperatura Baixa , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Espectrometria de Fluorescência , Análise Espectral/métodos
16.
J Phys Chem A ; 110(9): 2829-30, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509600
17.
J Phys Chem A ; 110(9): 3320-9, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509658

RESUMO

The density dependence of diiodomethane photoinduced isomerization in supercritical (sc) CO2, CHF3, and C2H6 was investigated by transient absorption spectroscopy, covering a fluid density range from 0.7 to 2.5 (in reduced units). The solvent-caged photoproduct iso-diiodomethane is formed even at the lowest density, and its yield increases about 4-fold over the whole range. At the same time, isomer formation rate constants increase by roughly an order of magnitude and show little variation between CO2, C2H6, and CHF3. Furthermore, the formation rate constant decreases significantly with increasing excitation energy. We propose an isomer formation mechanism involving a rapidly established preequilibrium between a solvent-caged iodine atom-methyliodide radical pair and a loosely bound iodine-methyliodide radical complex, from which the reaction subsequently proceeds to the isomer. The latter step seems to be controlled by collisional stabilization of the initially hot radical moiety, as the formation rate constant increases linearly with sc solvent viscosity. The model predicts a quadratic dependence of relative isomer yield on fluid density. A corresponding correlation is found with the local fluid density, calculated via solute-solvent radial distribution functions obtained from molecular dynamics (MD) simulations.


Assuntos
Hidrocarbonetos Iodados/química , Isomerismo , Fotoquímica/métodos , Benzeno , Dióxido de Carbono , Clorofluorcarbonetos de Metano , Cinética , Soluções
18.
J Phys Chem A ; 109(48): 10824-31, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16331925

RESUMO

Transient UV absorption spectra and kinetics of the CH(2)I radical in the gas phase have been investigated at 313 K. Following laser photolysis of 1-3 mbar CH(2)I(2) at 308 nm, transient spectra in the wavelength range 330-390 nm were measured at delay times between 60 ns and a few microseconds. The change of the absorption spectra at early times was attributed to vibrational cooling of highly excited CH(2)I radicals by collisional energy transfer to CH(2)I(2) molecules. From transient absorption decays measured at specific wavelengths, time-dependent concentrations of vibrationally "hot" and "cold" CH(2)I and CH(2)I(2) were extracted by kinetic modeling. In addition, the transient absorption spectrum of CH(2)I radicals between 330 and 400 nm was reconstructed from the simulated concentration-time profiles. The evolution of the absorption spectra of CH(2)I radicals and CH(2)I(2) due to collisional energy transfer was simulated in the framework of a modified Sulzer-Wieland model. Additional master equation simulations for the collisional deactivation of CH(2)I by CH(2)I(2) yield DeltaE values in reasonable agreement with earlier direct studies on the collisional relaxation of other systems. In addition, the simulations show that the shape of the vibrational population distribution of the hot CH(2)I radicals has no influence on the measured UV absorption signals. The implications of our results with respect to spectral assignments in recent ultrafast spectrokinetic studies of the photolysis of CH(2)I(2) in dense fluids are discussed.

19.
Phys Chem Chem Phys ; 7(6): 1205-13, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19791334

RESUMO

Non-equilibrium (NEMD) and equilibrium (EMD) molecular dynamics simulations are performed to investigate the vibrational cooling and asymmetric stretch spectral evolution of highly excited carbon dioxide produced in the photodissociation of organic peroxides in the solvents dichloromethane, carbon tetrachloride and xenon. Due to strong Fermi resonance the symmetric stretching and bending modes of carbon dioxide in CH2Cl2 and CCl4 jointly relax on a ten and hundred picosecond timescale, respectively, which is in accordance with experiment. However, the high frequency CO2 asymmetric stretch vibration relaxes on a considerably longer time scale because of weak interaction with the other modes. The relaxation rate coefficients of (and works done by) different modes obtained from NEMD and the Landau-Teller rate coefficients calculated through equilibrium force time correlation functions are in reasonable agreement. The analysis of these results leads to the conclusion that, in contrast to xenon where the relaxation takes about 20 ns, the shorter time scales in CH2Cl2 and CCl4 are caused by efficient near resonant vibration to vibration energy transfer from carbon dioxide to solvent molecules. The results of the non-equilibrium simulations are used to monitor the quasi-stationary asymmetric stretch infrared spectra of carbon dioxide during the cooling process. Comparison of the corresponding experimental results suggests that carbon dioxide initially is produced with a broad distribution of energy disposed in its bend and symmetric stretch modes while the asymmetric stretch mode remains unexcited.


Assuntos
Dióxido de Carbono/química , Físico-Química/métodos , Peróxidos/química , Fotoquímica/métodos , Simulação por Computador , Modelos Químicos , Modelos Estatísticos , Solventes/química , Fatores de Tempo
20.
J Am Chem Soc ; 125(43): 13274-8, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14570504

RESUMO

The photoinduced (266 nm) ultrafast decarboxylation of the peroxyester tert-butyl 9-methylfluorene-9-percarboxylate (TBFC) in solution has been studied with femtosecond time resolution. While the photodissociation of TBFC occurs too fast to be resolved, the intermediate 9-methylfluorenylcarbonyloxy radical (MeFl-CO(2)) decarboxylates on a picosecond time scale. The latter process is monitored by pump-probe absorption spectroscopy at wavelengths between 400 and 883 nm. The measured transient absorbance signals reveal a dominant fast decay with a lifetime of a few picoseconds and, to a minor extent, a slow component with a lifetime of about 55 ps. Statistical modeling of MeFl-CO(2) decarboxylation employing molecular parameters calculated by density functional theory suggests that the fast component is associated with the decarboxylation of vibrationally hot radicals, whereas the 55 ps decay reflects the dissociation of thermally equilibrated MeFl-CO(2) at ambient temperature. The vast majority of MeFl-CO(2) radicals thus decarboxylate on a time scale about an order of magnitude faster than expected from the time constant of 55 ps reported by Falvey and Schuster for this reference reaction. This literature value turns out to refer to decarboxylation rate of MeFl-CO(2) at ambient temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...